मान लीजिए कि $A$ और $B$ समुचचय हैं। यदि किसी समुचचय $X$ के लिए $A \cap X = B \cap X =\phi$ तथा $A \cup X = B \cup X ,$ तो सिद्ध कीजिए कि $A = B$.
Let $A$ and $B$ be two sets such that $A \cap X=B \cap x=f$ and $A \cup X=B \cup X$ for some
To show: $A=B$
It can be seen that
$A=A \cap(A \cup X)=A \cap(B \cup X)[A \cup X=B \cup X]$
$=(A \cap B) \cup(A \cap X)$ [Distributive law]
$=(A \cap B) \cup \varnothing[A \cap X=\varnothing]$
$=A \cap B$ .........$(1)$
Now, $B=B \cap(B \cup X)$
$=B \cap(A \cup X)[A \cup X=B \cup X]$
$=(B \cap A) \cup(B \cap X)$ [Distributive law]
$=(B \cap A) \cup \varnothing[B \cap X=\varnothing]$
$=B \cap A$
$=A \cap B$ ...........$(2)$
Hence, from $(1)$ and $(2),$ we obtain $A = B$
निम्नलिखित में से प्रत्येक समुच्चय युग्म का सम्मिलन ज्ञात कीजिए
$X=\{1,3,5\}$ $Y =\{1,2,3\}$
सिद्ध कीजिए कि $A \cup B = A \cap B$ का तात्पर्य है कि $A = B$
निम्नलिखित समुच्चय युग्मों में से कौन से युग्म असंयुक्त हैं ?
$\{1,2,3,4\}$ तथा $\{x: x$ एक प्राकृत संख्या है और $4 \leq x \leq 6\}$
यदि $X$ और $Y$ दो ऐसे समुच्चय हैं कि $X \cup Y$ में $50$ अवयव हैं, $X$ मे $28$ अवयव हैं और $Y$ में $32$ अवयव हैं, तो $X \cap Y$ में कितने अवयव हैं ?
माना $A = \{ (x,\,y):y = {e^x},\,x \in R\} $, $B = \{ (x,\,y):y = {e^{ - x}},\,x \in R\} .$ तब