- Home
- Standard 12
- Mathematics
જો $A=\left\{X=(x, y, z)^{T}: P X=0\right.$ અને $\left.\mathrm{x}^{2}+\mathrm{y}^{2}+\mathrm{z}^{2}=1\right\}$ જ્યાં $\mathrm{P}=\left[\begin{array}{ccc}1 & 2 & 1 \\ -2 & 3 & -4 \\ 1 & 9 & -1\end{array}\right]$ હોય તો ગણ $\mathrm{A}$
એકાકી ગણ છે
બરાબર બે ઘટકો ધરાવે છે
બે કરતાં વધારે ઘટકો ધરાવે છે
ખાલીગણ છે
Solution
Given $P=\left[\begin{array}{ccc}1 & 2 & 1 \\ -2 & 3 & -4 \\ 1 & 9 & 1\end{array}\right],$ Here $|\mathrm{P}|=0 $ and also given $P X=0$
$\Rightarrow\left[\begin{array}{ccc}1 & 2 & 1 \\ -2 & 3 & -4 \\ 1 & 9 & 1\end{array}\right]\left[\begin{array}{l}x \\ y \\ z\end{array}\right]=0$
$\left.\begin{array}{l}x+2 y+z=0 \\ \Rightarrow-2 x+3 y-4 z=0 \\ x+9 y-z=0\end{array}\right\} \quad-\quad D=0,$ so system have infinite many solutions,
By solving these equation
we get $x=\frac{-11 \lambda}{2} ; y=\lambda ; z=\frac{7 \lambda}{2}$
Also given, $x^{2}+y^{2}+z^{2}=1$
$\Rightarrow\left(\frac{-11 \lambda}{2}\right)^{2}+(\lambda)^{2}+\left(\frac{7 \lambda}{2}\right)^{2}=1$
$\Rightarrow \lambda=\pm \frac{1}{\sqrt{\frac{121}{4}+1+\frac{49}{4}}}$
so, there are 2 values of $\lambda$.
$\therefore$ so, there are 2 solution set of $(x, y, z) .$