3 and 4 .Determinants and Matrices
hard

જો $A=\left[\begin{array}{ll}x & 1 \\ 1 & 0\end{array}\right], x \in R$ અને $A^{4}=\left[a_{i j}\right]$ તથા $a_{11}=109,$ હોય તો $a_{22}$ ની કિમત શોધો 

A

$10$

B

$-8$

C

$-10$

D

$8$

(JEE MAIN-2020)

Solution

$A=\left[\begin{array}{ll}x & 1 \\ 1 & 0\end{array}\right]$

$A^{2}=\left[\begin{array}{ll}x & 1 \\ 1 & 0\end{array}\right]\left[\begin{array}{ll}x & 1 \\ 1 & 0\end{array}\right]=\left[\begin{array}{cc}x^{2}+1 & x \\ x & 1\end{array}\right]$

$A^{4}=\left[\begin{array}{cc}x^{2}+1 & x \\ x & 1\end{array}\right]\left[\begin{array}{cc}x^{2}+1 & x \\ x & 1\end{array}\right]$

$=\left[\begin{array}{ll}\left(x^{2}+1\right)^{2}+x^{2} & x\left(x^{2}+1\right)+x \\ x\left(x^{2}+1\right)+x & x^{2}+1\end{array}\right]$

$a_{11}=\left(x^{2}+1\right)^{2}+x^{2}=109$

$\Rightarrow x =\pm 3$

$a_{22}=x^{2}+1=10$

Standard 12
Mathematics

Similar Questions

Start a Free Trial Now

Confusing about what to choose? Our team will schedule a demo shortly.