- Home
- Standard 12
- Mathematics
If $A$ and $B$ are symmetric matrices of the same order, then show that $AB$ is symmetric if and only if $A$ and $B$ commute, that is $AB = BA$.
Solution
Solution since $A$ and $B$ are both symmetric matrices, therefore $A^{\prime}=A$ and $B^{\prime}=B$.
Let $AB$ be symmetric, then $(A B)^{\prime}=A B$
But $(\mathrm{AB})^{\prime}=\mathrm{B}^{\prime} \mathrm{A}^{\prime}=\mathrm{BA}(\text { Why } ?)$
Therefore $ B A=A B$
Conversely, if $\mathrm{AB}=\mathrm{BA}$, then we shall show that $\mathrm{AB}$ is symmetric.
Now $(\mathrm{AB})^{\prime}=\mathrm{B}^{\prime} \mathrm{A}^{\prime}$
$=\mathrm{B} \mathrm{A}(\text { as } \mathrm{A} \text { and } \mathrm{B}$ are symmetric)
$=\mathrm{AB}$
Hence $AB$ is symmetric.