3 and 4 .Determinants and Matrices
medium

Let $A$ be a symmetric matrix of order $2$ with integer entries. If the sum of the diagonal elements of $A ^{2}$ is $1,$ then the possible number of such matrices is

A

$4$

B

$1$

C

$6$

D

$12$

(JEE MAIN-2021)

Solution

$A=\left(\begin{array}{ll}a & b \\ b & c\end{array}\right), \quad a, b, c \in I$

$A^{2}=\left(\begin{array}{ll}a & b \\ b & c\end{array}\right)\left(\begin{array}{ll}a & b \\ b & c\end{array}\right)=\left(\begin{array}{cc}a^{2}+b^{2} & b(a+c) \\ b(a+c) & b^{2}+c^{2}\end{array}\right)$

Sum of the diagonal entries of $A^{2}=a^{2}+2 b^{2}+c^{2}$

Given $a^{2}+2 b^{2}+c^{2}=1, a, b, c \in I$

$b =0$ and $a ^{2}+ c ^{2}=1$

Case $-1: a=0 \Rightarrow c=\pm 1 \quad$ $(2-$matrices)

Case $- 2 : c=0 \Rightarrow a=\pm 1 \quad$ $(2-$matrices)

Total $=4$ matrices

Standard 12
Mathematics

Similar Questions

Start a Free Trial Now

Confusing about what to choose? Our team will schedule a demo shortly.