- Home
- Standard 12
- Mathematics
3 and 4 .Determinants and Matrices
medium
Let $A$ be a symmetric matrix of order $2$ with integer entries. If the sum of the diagonal elements of $A ^{2}$ is $1,$ then the possible number of such matrices is
A
$4$
B
$1$
C
$6$
D
$12$
(JEE MAIN-2021)
Solution
$A=\left(\begin{array}{ll}a & b \\ b & c\end{array}\right), \quad a, b, c \in I$
$A^{2}=\left(\begin{array}{ll}a & b \\ b & c\end{array}\right)\left(\begin{array}{ll}a & b \\ b & c\end{array}\right)=\left(\begin{array}{cc}a^{2}+b^{2} & b(a+c) \\ b(a+c) & b^{2}+c^{2}\end{array}\right)$
Sum of the diagonal entries of $A^{2}=a^{2}+2 b^{2}+c^{2}$
Given $a^{2}+2 b^{2}+c^{2}=1, a, b, c \in I$
$b =0$ and $a ^{2}+ c ^{2}=1$
Case $-1: a=0 \Rightarrow c=\pm 1 \quad$ $(2-$matrices)
Case $- 2 : c=0 \Rightarrow a=\pm 1 \quad$ $(2-$matrices)
Total $=4$ matrices
Standard 12
Mathematics