3 and 4 .Determinants and Matrices
hard

Let $A=\left[\begin{array}{lll}x & y & z \\ y & z & x \\ z & x & y\end{array}\right], \quad$ where $x, y$ and $z$ are real numbers such that $x + y + z >0$ and $xyz =2$ If $A ^{2}= I _{3},$ then the value of $x ^{3}+ y ^{3}+ z ^{3}$ is ............

A

$7$

B

$5$

C

$9$

D

$6$

(JEE MAIN-2021)

Solution

$A ^{2}= I$

$\left(\right.$ as $\left.A^{\prime}=A\right)$

$\Rightarrow AA ^{\prime}= I$

$\Rightarrow A$ is orthogonal

So, $x^{2}+y^{2}+z^{2}=1$ and $x y+y z+z x=0$

$\Rightarrow(x+y+z)^{2}=1+2 \times 0$

$\Rightarrow x+y+z=1$

Thus,

$x^{3}+y^{3}+z^{3}=3 \times 2+1 \times(1-0)$

$=7$

Standard 12
Mathematics

Similar Questions

Start a Free Trial Now

Confusing about what to choose? Our team will schedule a demo shortly.