Let $m, n \in N$ and $\operatorname{gcd}(2, n)=1$. If $30\left(\begin{array}{l}30 \\ 0\end{array}\right)+29\left(\begin{array}{l}30 \\ 1\end{array}\right)+\ldots+2\left(\begin{array}{l}30 \\ 28\end{array}\right)+1\left(\begin{array}{l}30 \\ 29\end{array}\right)= n .2^{ m }$ then $n + m$ is equal to (Here $\left.\left(\begin{array}{l} n \\ k \end{array}\right)={ }^{ n } C _{ k }\right)$
$45$
$56$
$42$
$36$
If ${(1 + x)^n} = {C_0} + {C_1}x + {C_2}{x^2} + .... + {C_n}{x^n}$, then ${C_0}{C_2} + {C_1}{C_3} + {C_2}{C_4} + {C_{n - 2}}{C_n}$ equals
The coefficient of $x^{49}$ in the expansion of $(x - 1)$$\left( {x\, - \,\frac{1}{2}\,} \right)$$\left( {x\, - \,\frac{1}{{{2^2}}}\,} \right)$ .....$\left( {x\, - \,\frac{1}{{{2^{49}}}}\,} \right)$ is equal to
If $x + y = 1$, then $\sum\limits_{r = 0}^n {{r^2}{\,^n}{C_r}{x^r}{y^{n - r}}} $ equals
The sum to $(n + 1)$ terms of the series $\frac{{{C_0}}}{2} - \frac{{{C_1}}}{3} + \frac{{{C_2}}}{4} - \frac{{{C_3}}}{5} + ...$ is
In the expansion of ${(1 + x)^n}$ the sum of coefficients of odd powers of $x$ is