7.Binomial Theorem
normal

The coefficient of $x^{49}$ in the expansion of $(x - 1)$$\left( {x\, - \,\frac{1}{2}\,} \right)$$\left( {x\, - \,\frac{1}{{{2^2}}}\,} \right)$ .....$\left( {x\, - \,\frac{1}{{{2^{49}}}}\,} \right)$ is equal to

A

$-2 \left( {1\, - \,\frac{1}{{{2^{50}}}}\,} \right)$

B

$+$ ve coefficient of $x$

C

$-$ ve coefficient of $x$

D

$-2 \left( {1\, - \,\frac{1}{{{2^{49}}}}\,} \right)$

Solution

coeff.. of $x^{49}$ in this series is

$-\left[ {1 + \frac{1}{2}\, + \frac{1}{{{2^2}}}\, + …… + \frac{1}{{{2^{49}}}}} \right]$ $=$$ – \,\left[ {\frac{{1 – \frac{1}{{{2^{50}}}}}}{{1 – \frac{1}{2}}}} \right]$ $=$$ – \,2.\,\left[ {1 – \frac{1}{{{2^{50}}}}} \right]$

Standard 11
Mathematics

Similar Questions

Start a Free Trial Now

Confusing about what to choose? Our team will schedule a demo shortly.