- Home
- Standard 12
- Mathematics
3 and 4 .Determinants and Matrices
hard
Let $[\lambda]$ be the greatest integer less than or equal to $\lambda$. The set of all values of $\lambda$ for which the system of linear equations $x+y+z=4,3 x+2 y+5 z=3$ $9 x+4 y+(28+[\lambda]) z=[\lambda]$ has a solution is:
A
${R}$
B
$(-\infty,-9) \cup(-9, \infty)$
C
$[-9,-8)$
D
$(-\infty,-9) \cup[-8, \infty)$
(JEE MAIN-2021)
Solution
$\left| {\begin{array}{*{20}{r}} 1&1&1\\ 3&2&2\\ 9&4&{28 + [\lambda ]} \end{array}} \right|$ $=-24-[\lambda] +15=-[\lambda]-9$
if $[\lambda]+9 \neq 0$ then unique solution
if $[\lambda]+9=0$ then $\mathrm{D}_{1}=\mathrm{D}_{2}=\mathrm{D}_{3}=0$ so infinite solutions
Hence $\lambda$ can be any real number.
Standard 12
Mathematics