If $A, B, C$ are the angles of triangle then the value of determinant $\left| {\begin{array}{*{20}{c}}
  {\sin \,2A}&{\sin \,C}&{\sin \,B} \\ 
  {\sin \,C}&{\sin \,2B}&{\sin A} \\ 
  {\sin \,B}&{\sin \,A}&{\sin \,2C} 
\end{array}} \right|$ is

  • A

    $\pi $

  • B

    $0$

  • C

    $2\pi $

  • D

    None

Similar Questions

The number of solutions of the equations $x + 4y - z = 0,$ $3x - 4y - z = 0,\,x - 3y + z = 0$ is

The equation $\left| {\begin{array}{*{20}{c}}{{{(1 + x)}^2}}&{{{(1 - x)}^2}}&{ - \,(2 + {x^2})}\\{2x + 1}&{3x}&{1 - 5x}\\{x + 1}&{2x}&{2 - 3x}\end{array}} \right|$ $+$ $\left| {\begin{array}{*{20}{c}}{{{(1 + x)}^2}}&{2x + 1}&{x + 1}\\{{{(1 - x)}^2}}&{3x}&{2x}\\{1 - 2x}&{3x - 2}&{2x - 3}\end{array}} \right|$ $= 0$

The value of the determinant $\left| {\,\begin{array}{*{20}{c}}2&8&4\\{ - 5}&6&{ - 10}\\1&7&2\end{array}\,} \right|$is

Evaluate the determinants

$\left|\begin{array}{ccc}2 & -1 & -2 \\ 0 & 2 & -1 \\ 3 & -5 & 0\end{array}\right|$

$2x + 3y + 4z = 9$,$4x + 9y + 3z = 10,$$5x + 10y + 5z = 11$ then the value of $ x$ is