3 and 4 .Determinants and Matrices
normal

If $A, B, C$ are the angles of triangle then the value of determinant $\left| {\begin{array}{*{20}{c}}
  {\sin \,2A}&{\sin \,C}&{\sin \,B} \\ 
  {\sin \,C}&{\sin \,2B}&{\sin A} \\ 
  {\sin \,B}&{\sin \,A}&{\sin \,2C} 
\end{array}} \right|$ is

A

$\pi $

B

$0$

C

$2\pi $

D

None

Solution

$\left|\begin{array}{ccc}{\sin A} & {\cos A} & {0} \\ {\sin B} & {\cos B} & {0} \\ {\sin C} & {\cos C} & {0}\end{array}\right| \times\left|\begin{array}{ccc}{\cos A} & {\sin A} & {0} \\ {\cos B} & {\sin B} & {0} \\ {\cos C} & {\sin C} & {0}\end{array}\right|=0$

Standard 12
Mathematics

Similar Questions

Start a Free Trial Now

Confusing about what to choose? Our team will schedule a demo shortly.