Let $\mathrm{A}\,(\sec \theta, 2 \tan \theta)$ and $\mathrm{B}\,(\sec \phi, 2 \tan \phi)$, where $\theta+\phi=\pi / 2$, be two points on the hyperbola $2 \mathrm{x}^{2}-\mathrm{y}^{2}=2$. If $(\alpha, \beta)$ is the point of the intersection of the normals to the hyperbola at $\mathrm{A}$ and $\mathrm{B}$, then $(2 \beta)^{2}$ is equal to ..... .

  • [JEE MAIN 2021]
  • A

    $6$

  • B

    $12$

  • C

    $24$

  • D

    None of these

Similar Questions

If a circle cuts a rectangular hyperbola $xy = {c^2}$ in $A, B, C, D$ and the parameters of these four points be ${t_1},\;{t_2},\;{t_3}$ and ${t_4}$ respectively. Then

The locus of a point $P (h, k)$ such that the line $y = hx + k$ is tangent to $4x^2 - 3y^2 = 1$ , is a/an

The product of the perpendiculars drawn from any point on a hyperbola to its asymptotes is

On a rectangular hy perbola $x^2-y^2= a ^2, a >0$, three points $A, B, C$ are taken as follows: $A=(-a, 0) ; B$ and $C$ are placed symmetrically with respect to the $X$-axis on the branch of the hyperbola not containing $A$. Suppose that the $\triangle A B C$ is equilateral. If the side length of the $\triangle A B C$ is $k a$, then $k$ lies in the interval

  • [KVPY 2018]

The point $\mathrm{P}(-2 \sqrt{6}, \sqrt{3})$ lies on the hyperbola $\frac{x^{2}}{a^{2}}-\frac{y^{2}}{b^{2}}=1$ having eccentricity $\frac{\sqrt{5}}{2} .$ If the tangent and normal at $\mathrm{P}$ to the hyperbola intersect its conjugate axis at the point $\mathrm{Q}$ and $\mathrm{R}$ respectively, then $QR$ is equal to :

  • [JEE MAIN 2021]