- Home
- Standard 11
- Mathematics
10-2. Parabola, Ellipse, Hyperbola
hard
Let $\mathrm{A}\,(\sec \theta, 2 \tan \theta)$ and $\mathrm{B}\,(\sec \phi, 2 \tan \phi)$, where $\theta+\phi=\pi / 2$, be two points on the hyperbola $2 \mathrm{x}^{2}-\mathrm{y}^{2}=2$. If $(\alpha, \beta)$ is the point of the intersection of the normals to the hyperbola at $\mathrm{A}$ and $\mathrm{B}$, then $(2 \beta)^{2}$ is equal to ..... .
A
$6$
B
$12$
C
$24$
D
None of these
(JEE MAIN-2021)
Solution
Since, point $A(\sec \theta, 2 \tan \theta)$
lies on the hyperbola
$2 x^{2}-y^{2}=2$
Therefore, $2 \sec ^{2} \theta-4 \tan ^{2} \theta=2$
$\Rightarrow 2+2 \tan ^{2} \theta-4 \tan ^{2} \theta=2$
$\Rightarrow \tan \theta=0 \Rightarrow \theta=0$
Similarly, for point $\mathrm{B}$, we will get $\phi=0$.
but according to question $\theta+\phi=\frac{\pi}{2}$
which is not possible.
Standard 11
Mathematics