Let $P \left( x _0, y _0\right)$ be the point on the hyperbola $3 x ^2-4 y ^2$ $=36$, which is nearest to the line $3 x+2 y=1$. Then $\sqrt{2}\left( y _0- x _0\right)$ is equal to :
$-3$
$9$
$-9$
$3$
The distance between the directrices of a rectangular hyperbola is $10$ units, then distance between its foci is
If $PQ$ is a double ordinate of the hyperbola $\frac{{{x^2}}}{{{a^2}}} - \frac{{{y^2}}}{{{b^2}}} = 1$ such that $OPQ$ is an equilateral triangle, $O$ being the center of the hyperbola. then the $'e'$ eccentricity of the hyperbola, satisfies
The length of the latus rectum and directrices of a hyperbola with eccentricity e are 9 and $\mathrm{x}= \pm \frac{4}{\sqrt{3}}$, respectively. Let the line $y-\sqrt{3} \mathrm{x}+\sqrt{3}=0$ touch this hyperbola at $\left(\mathrm{x}_0, \mathrm{y}_0\right)$. If $\mathrm{m}$ is the product of the focal distances of the point $\left(\mathrm{x}_0, \mathrm{y}_0\right)$, then $4 \mathrm{e}^2+\mathrm{m}$ is equal to ...........
Centre of hyperbola $9{x^2} - 16{y^2} + 18x + 32y - 151 = 0$ is
Length of latusrectum of curve $xy = 7x + 5y$ is