Let $B$ be the centre of the circle $x^{2}+y^{2}-2 x+4 y+1=0$ Let the tangents at two points $\mathrm{P}$ and $\mathrm{Q}$ on the circle intersect at the point $\mathrm{A}(3,1)$. Then $8.$ $\left(\frac{\text { area } \triangle \mathrm{APQ}}{\text { area } \triangle \mathrm{BPQ}}\right)$ is equal to .... .

  • [JEE MAIN 2021]
  • A

    $18$

  • B

    $36$

  • C

    $72$

  • D

    $12$

Similar Questions

A circle touches the $y$ -axis at the point $(0,4)$ and passes through the point $(2,0) .$ Which of the following lines is not a tangent to this circle?

  • [JEE MAIN 2020]

The line $ax + by + c = 0$ is a normal to the circle ${x^2} + {y^2} = {r^2}$. The portion of the line $ax + by + c = 0$ intercepted by this circle is of length

Tangents drawn from origin to the circle ${x^2} + {y^2} - 2ax - 2by + {b^2} = 0$ are perpendicular to each other, if

The tangent$(s)$ from the point of intersection of the lines $2x -3y + 1$ = $0$ and $3x -2y -1$ = $0$ to circle $x^2 + y^2 + 2x -4y$ = $0$ will be -

The equation of the circle having the lines $y^2 - 2y + 4x - 2xy = 0$ as its normals $\&$ passing through the point $(2 , 1)$ is :