- Home
- Standard 11
- Mathematics
Let $\mathrm{n}$ denote the number of solutions of the equation $z^{2}+3 \bar{z}=0$, where $\mathrm{z}$ is a complex number. Then the value of $\sum_{k=0}^{\infty} \frac{1}{n^{k}}$ is equal to:
$1$
$2$
$\frac{4}{3}$
$\frac{3}{2}$
Solution
$z^{2}+3 \bar{z}=0$
$\text { Put } z=x+i y$
$\Rightarrow x^{2}-y^{2}+2 i x y+3(x-i y)=0$
$\Rightarrow\left(x^{2}-y^{2}+3 x\right)+i(2 x y-3 y)=0+i 0$
$\therefore x^{2}-y^{2}+3 x=0 \quad \ldots \ldots(1)$
$2 x y-3 y=0 \quad \ldots \cdot$
$x=\frac{3}{2}, y=0$
Put $x=\frac{3}{2}$ in equation $(1)$
$\frac{9}{4}-y^{2}+\frac{9}{2}=0$
$y^{2}=\frac{27}{4} \Rightarrow y=\pm \frac{3 \sqrt{3}}{2}$
$\therefore(x, y)=\left(\frac{3}{2}, \frac{3 \sqrt{3}}{2}\right),\left(\frac{3}{2}, \frac{-3 \sqrt{3}}{2}\right)$
$\text { Put } y=0 \Rightarrow x^{2}-0+3 x=0$
$\quad x=0,-3$
$\therefore \quad(x, y)=(0,0),(-3,0)$
$\therefore \text { No of solutions }=n=4$
$\sum_{k=0}^{\infty}\left(\frac{1}{n^{k}}\right) \quad=\sum_{k=0}^{\infty}\left(\frac{1}{4^{k}}\right)$
$=\frac{1}{1}+\frac{1}{4}+\frac{1}{16}+\frac{1}{64}+\ldots \ldots$
$=\frac{1}{1-\frac{1}{4}}=\frac{4}{3}$