3 and 4 .Determinants and Matrices
medium

અહી વાસ્તવિક શ્રેણિક $A=\left[a_{i j}\right]$  ની કક્ષા $3 \times  3$ છે કે જેથી $i=1,2,3$ માટે $a_{i 1}+a_{i 2}+a_{i 3}=1$ થાય તો શ્રેણિક $A^{3}$ ના બધાજ ઘટકોનો સરવાળો મેળવો.

A

$1$

B

$2$

C

$3$

D

$9$

(JEE MAIN-2021)

Solution

$A=\left[\begin{array}{lll}a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33}\end{array}\right]$

Let $x=\left[\begin{array}{l}1 \\ 1 \\ 1\end{array}\right]$

$A X=\left[\begin{array}{l}a_{11}+a_{12}+a_{13} \\ a_{21}+a_{22}+a_{23} \\ a_{31}+a_{32}+a_{33}\end{array}\right]=\left[\begin{array}{c}1 \\ 1 \\ 1\end{array}\right]$

$\Rightarrow \mathrm{AX}=\mathrm{X}$

Replace $\mathrm{X}$ by $\mathrm{AX}$

$\mathrm{A}^{2} \mathrm{X}=\mathrm{AX}=\mathrm{X}$

Replace $\mathrm{X}$ by $\mathrm{AX}$

$\mathrm{A}^{3} \mathrm{X}=\mathrm{AX}=\mathrm{X}$

Let $A^{3}=\left[\begin{array}{lll}x_{1} & x_{2} & X_{3} \\ y_{1} & y_{2} & y_{3} \\ z_{1} & z_{2} & z_{3}\end{array}\right]$

$A^{3}\left[\begin{array}{l}1 \\ 1 \\ 1\end{array}\right]=\left[\begin{array}{l}x_{1}+x_{2}+x_{3} \\ y_{1}+y_{2}+y_{3} \\ z_{1}+z_{2}+z_{3}\end{array}\right]=\left[\begin{array}{l}1 \\ 1 \\ 1\end{array}\right]$

Sum of all the element $=3$

Standard 12
Mathematics

Similar Questions

Start a Free Trial Now

Confusing about what to choose? Our team will schedule a demo shortly.