Let $S_{n}$ denote the sum of first $n$-terms of an arithmetic progression. If $S_{10}=530, S_{5}=140$, then $\mathrm{S}_{20}-\mathrm{S}_{6}$ is equal to :

  • [JEE MAIN 2021]
  • A

    $1852$

  • B

    $1842$

  • C

    $1872$

  • D

    $1862$

Similar Questions

If $\tan \,n\theta = \tan m\theta $, then the different values of $\theta $ will be in

Let $a_1, a_2, a_3, \ldots, a_{100}$ be an arithmetic progression with $a_1=3$ and $S_p=\sum_{i=1}^p a_i, 1 \leq p \leq 100$. For any integer $n$ with $1 \leq n \leq 20$, let $m=5 n$. If $\frac{S_{m m}}{S_n}$ does not depend on $n$, then $a_2$ is

  • [IIT 2011]

If $a,\;b,\;c,\;d,\;e,\;f$ are in $A.P.$, then the value of $e - c$ will be

If $(b+c),(c+a),(a+b)$ are in $H.P$ , then $a^2,b^2,c^2$ are in.......

If $A$ be an arithmetic mean between two numbers and $S$ be the sum of $n$ arithmetic means between the same numbers, then