Let $S=\{1,2,3,4,5,6,7\} .$ Then the number of possible functions $f: S \rightarrow S$ such that $f(m \cdot n)=f(m) \cdot f(n)$ for every $m, n \in S$ and $m . n \in S$ is equal to $......$
$500$
$600$
$570$
$490$
Domain of the definition of function
$f(x) = \sqrt {\frac{{4 - {x^2}}}{{\left[ x \right] + 2}}} $ is $($ where $[.] \rightarrow G.I.F.)$
Let $A$ be the set of all $50$ students of Class $X$ in a school. Let $f: A \rightarrow N$ be function defined by $f(x)=$ roll number of the student $x$. Show that $f$ is one-one but not onto.
Let $A=\{(x, y): 2 x+3 y=23, x, y \in N\}$ and $B=\{x:(x, y) \in A\}$. Then the number of one-one functions from $\mathrm{A}$ to $\mathrm{B}$ is equal to ................
Let $f$ be a real valued function defined by
$f(x) = sin^{-1} \left( {\frac{{\,\,1 - \,\,\left| x \right|}}{3}} \right) + cos^{-1}\left( {\frac{{\left| x \right|\,\, - \,\,3}}{5}} \right)$ .
Then domain of $f(x)$ is given by :
Let $R =\{ a , b , c , d , e \}$ and $S =\{1,2,3,4\}$. Total number of onto function $f: R \rightarrow S$ such that $f(a) \neq$ 1 , is equal to $.............$.