1.Relation and Function
hard

Let $S=\{1,2,3,4,5,6,7\} .$ Then the number of possible functions $f: S \rightarrow S$ such that $f(m \cdot n)=f(m) \cdot f(n)$ for every $m, n \in S$ and $m . n \in S$ is equal to $......$

A

$500$

B

$600$

C

$570$

D

$490$

(JEE MAIN-2021)

Solution

$f(m n)=f(m) \cdot f(n)$

Put $m=1 f(n)=f(1) \cdot f(n) \Rightarrow f(1)=1$

Put $m=n=2$

$f(4)=f(2) \cdot f(2)$

$f(2)=1 \Rightarrow f(4)=1 \text { or } f(2)=2 \Rightarrow f(4)=4$

Put $m=2, n=3$

$f(6)=f(2) \cdot f(3)$

$\text { when } f(2)=1  \Rightarrow f(3)=1 \text { to } 7$

$f(2)=2 \Rightarrow f(3)=1 \text { or } 2 \text { or } 3$

$f(5), f(7)$ can take any value

Total $=(1 \times 1 \times 7 \times 1 \times 7 \times 1 \times 7)$

$+(1 \times 1 \times 3 \times 1 \times 7 \times 1 \times 7)$

$=490$

Standard 12
Mathematics

Similar Questions

Start a Free Trial Now

Confusing about what to choose? Our team will schedule a demo shortly.