माना $S =\{1,2,3,4,5,6,7\}$ है। तो ऐसे फलनों $f: S \rightarrow S$ जिनके लिए $f( m \cdot n )=f( m ) \cdot f( n ) \forall m , n \in S$ तथा $m \cdot n \in S$ है, की संख्या बराबर है ........ |
$500$
$600$
$570$
$490$
यदि $x,\;y \in N$ के सभी मानों के लिये $f(x + y) = f(x)f(y)$ को सन्तुष्ट करने वाला एक फलन $f(x)$ इस प्रकार है कि $f(1) = 3$ तथा $\sum\limits_{x = 1}^n {f(x) = 120} $, तब $n$ का मान है
यदि बहुपद $p(x)=4 x^3-3 x$, में $x$ का मान $\left(-\frac{1}{2}, \frac{1}{2}\right)$ अन्तराल में हो तो बहुपद का परास $(range)$ निम्न में से कौन सा है?
यदि $f(x)=\frac{\left(\tan 1^{\circ}\right) x+\log _e(123)}{x \log _e(1234)-\left(\tan 1^{\circ}\right)}, x>0$, हैं, तो $f(f(x))+f\left(f\left(\frac{4}{x}\right)\right)$ का निम्नतम मान है
यदि $f({x_1}) - f({x_2}) = f\left( {\frac{{{x_1} - {x_2}}}{{1 - {x_1}{x_2}}}} \right)$, ${x_1},{x_2} \in [ - 1,\,1]$ के लिए, तब $f(x)$ है
सिद्ध कीजिए कि $f: R \rightarrow\{x \in R :-1 < x < 1\}$ जहाँ $f(x)=\frac{x}{1+|x|}, x \in R$ द्वारा
परिभाषित फलन एकैकी तथा आच्छादक है ।