Which pair $(s)$ of function $(s)$ is/are equal ?
where $\{x\}$ and $[x]$ denotes the fractional part $\&$ integral part functions.
$f(x) = cos(2tan ^{ -1} x) ; g(x) =$ $\frac{{1 - {x^2}}}{{1 + {x^2}}}$
$f(x) = \frac{{2x}}{{1 + {x^2}}} ; g(x) = sin(2cot ^{ -1} x)$
$f(x) ={e^{\ell n(\operatorname{sgn} {{\cot }^{ - 1}}x)}} ; g(x) ={e^{\ell n\left[ {1 + \left\{ x \right\}} \right]}}$
All of the above
$f(x,\;y) = \frac{1}{{x + y}}$ is a homogeneous function of degree
Let $A=\{1,2,3,4,5\}$ and $B=\{1,2,3,4,5,6\}$. Then the number of functions $f: A \rightarrow B$ satisfying $f(1)+f(2)=f(4)-1$ is equal to
Let $A= \{1, 2, 3, 4\}$ and $R : A \to A$ be the relation defined by $R = \{ (1, 1), (2, 3), (3, 4), ( 4, 2) \}$. The correct statement is
Let $R$ be the set of all real numbers and $f(x)=\sin ^{10} x\left(\cos ^8 x+\cos ^4 x+\cos ^2 x+1\right)$ $x \in R$. Let $S=\{\lambda \in R$ there exists a point $c \in(0,2 \pi)$ with $\left.f^{\prime}(c)=\lambda f(c)\right\}$ Then,
Let $f(x) = \frac{{x\,\, - \,\,1}}{{2\,{x^2}\,\, - \,\,7x\,\, + \,\,5}}$ . Then :