Which pair $(s)$ of function $(s)$ is/are equal ?
where $\{x\}$ and $[x]$ denotes the fractional part $\&$ integral part functions.
$f(x) = cos(2tan ^{ -1} x) ; g(x) =$ $\frac{{1 - {x^2}}}{{1 + {x^2}}}$
$f(x) = \frac{{2x}}{{1 + {x^2}}} ; g(x) = sin(2cot ^{ -1} x)$
$f(x) ={e^{\ell n(\operatorname{sgn} {{\cot }^{ - 1}}x)}} ; g(x) ={e^{\ell n\left[ {1 + \left\{ x \right\}} \right]}}$
All of the above
Suppose $f$ is a function satisfying $f ( x + y )= f ( x )+ f ( y )$ for all $x , y \in N$ and $f (1)=\frac{1}{5}$. If $\sum \limits_{n=1}^m \frac{f(n)}{n(n+1)(n+2)}=\frac{1}{12}$, then $m$ is equal to $...............$.
Let $f(x) = {\cos ^{ - 1}}\left( {\frac{{2x}}{{1 + {x^2}}}} \right) + {\sin ^{ - 1}}\left( {\frac{{1 - {x^2}}}{{1 + {x^2}}}} \right)$ then the value of $f(1) + f(2)$, is -
If a function $g(x)$ is defined in $[-1, 1]$ and two vertices of an equilateral triangle are $(0, 0)$ and $(x, g(x))$ and its area is $\frac{\sqrt 3}{4}$ , then $g(x)$ equals :-
Domain of the definition of function
$f(x) = \sqrt {\frac{{4 - {x^2}}}{{\left[ x \right] + 2}}} $ is $($ where $[.] \rightarrow G.I.F.)$
Domain of the function $f(x) = \sqrt {2 - {{\sec }^{ - 1}}x} $ is