- Home
- Standard 12
- Mathematics
माना $S =\left\{\left(\begin{array}{cc}-1 & a \\ 0 & b \end{array}\right) ; a , b \in\{1,2,3, \ldots 100\}\right\}$ तथा माना $T _{ n }=\left\{ A \in S : A ^{ n ( n +1)}= I \right\}$ है, तो $\bigcap \limits_{n=1}^{100} T_n$ में अवयवों की संख्या होगी
$50$
$85$
$100$
$137$
Solution
$A=\left[\begin{array}{cc}-1 & a \\ 0 & b\end{array}\right]$
$A^{2}=\left[\begin{array}{cc}-1 & a \\ 0 & b\end{array}\right]\left[\begin{array}{cc}-1 & a \\ 0 & b\end{array}\right]$
$=\left[\begin{array}{cc}1 & -a+a b \\ 0 & b^{2}\end{array}\right]$
$\therefore T _{ n }=\left\{ A \in S ; A ^{ n ( n +1)}= I \right\}$
$\therefore$ $b$ must be equal to $1$
$\therefore$ In this case $A ^{2}$ will become identity matrix and a can take any value from $1$ to $100$
$\therefore$ Total number of common element will be $100$ .