Mathematical Reasoning
hard

ધારો કે $\Delta, \nabla \in\{\wedge, v\}$ એવાં છે કે જેથી $p$ $\nabla\,q \Rightarrow(( p \Delta q ) \nabla r )$ એ નિત્યસત્ય $(tautology)$ થાય.તો $( p \nabla q ) \Delta\,r$ એ $\dots\dots\dots$ને તાર્કિક રીતે સમકક્ષ છે.

A

$( p \Delta r ) \vee q$

B

$( p \Delta r ) \wedge q$

C

$(p \wedge r) \Delta q$

D

$( p \nabla r ) \wedge q$

(JEE MAIN-2022)

Solution

$Case-I$ If $\Delta \equiv \nabla \equiv \wedge$

$(p \wedge q) \rightarrow((p \wedge q) \wedge r)$

it can be false if $r$ is false,

so not a tautology

$Case-II$ If $\Delta \equiv \nabla \equiv \vee$

$( p \vee q ) \rightarrow(( p \vee q ) \vee r ) \equiv$ tautology

then $(p \vee q) \vee r \equiv(p \Delta r) \vee q$

$Case-III$ if $\Delta=\vee, \nabla=\wedge$

then $( p \wedge q ) \rightarrow\{( p \vee q ) \wedge r \}$

Not a tautology

$($ Check $p \rightarrow T , q \rightarrow T , r \rightarrow F )$

$Case-IV$ if $\Delta=\wedge, \nabla=\vee$

$(p \wedge q) \rightarrow\{(p \wedge q) \vee r\}$

Not a tautology

Standard 11
Mathematics

Similar Questions

Start a Free Trial Now

Confusing about what to choose? Our team will schedule a demo shortly.