माना $\Delta, \nabla \in\{\wedge, \vee\}$ इस प्रकार है कि $p \nabla q$ $\Rightarrow(( p \Delta q ) \nabla r )$ पुनरूक्ति है। तब (p $\nabla q ) \Delta r$ किस के तार्किक तुल्य है :
$( p \Delta r ) \vee q$
$( p \Delta r ) \wedge q$
$(p \wedge r) \Delta q$
$( p \nabla r ) \wedge q$
माना $F _{1}( A , B , C )=( A \wedge \sim B ) \vee[\sim C \wedge( A \vee B )] \vee \sim A$ तथा $F _{2}( A , B )=( A \vee B ) \vee( B \rightarrow \sim A )$ दो तर्क संगत व्यंजक हैं। तो ...........
निम्न में से कौनसा कथन नहीं है
यदि बूलीय व्यंजक $( p \oplus q ) \wedge(\sim p \odot q ), p \wedge q$ के तुल्य है, जहाँ $\oplus, \odot \in\{\wedge, \vee\}$ है, तो क्रमित युग्म $(\oplus, \odot)$ है-
बूले के व्यंजक $\sim(p \vee q) \vee(\sim p \wedge q)$ के समतुल्य हैं