- Home
- Standard 12
- Mathematics
3 and 4 .Determinants and Matrices
hard
અહી $A =\left[\begin{array}{ccc}2 & -1 & -1 \\ 1 & 0 & -1 \\ 1 & -1 & 0\end{array}\right]$ અને $B = A - I$ છે. જો $\omega=\frac{\sqrt{3} i -1}{2}$ હોય તો ગણ $\left\{ n \in\{1,2, \ldots, 100\}: A ^{ n }+(\omega B )^{ n }= A + B \right\}$ ના ઘટકોની સંખ્યા $..........$ થાય.
A
$17$
B
$15$
C
$14$
D
$13$
(JEE MAIN-2022)
Solution
$A=\left[\begin{array}{ccc}2 & -1 & -1 \\ 1 & 0 & -1 \\ 1 & -1 & 0\end{array}\right] \Rightarrow A^{2}=A \Rightarrow A^{n}=A$
Now, $B = A – I =\left[\begin{array}{lll}1 & -1 & -1 \\ 1 & -1 & -1 \\ 1 & -1 & -1\end{array}\right]$
$B ^{2}=- B$
$B ^{3}=- B ^{2}= B$
$B ^{5}= B$
$B ^{99}= B$
Also, $\omega^{31}=1$
So, $n =$ common of $\{1,3,5, \ldots, 99\}$ and
$\{3,6,9, \ldots, 99\}=17$
Standard 12
Mathematics
Similar Questions
normal
normal