3 and 4 .Determinants and Matrices
hard

અહી $A =\left[\begin{array}{ccc}2 & -1 & -1 \\ 1 & 0 & -1 \\ 1 & -1 & 0\end{array}\right]$ અને $B = A - I$ છે. જો  $\omega=\frac{\sqrt{3} i -1}{2}$ હોય તો ગણ $\left\{ n \in\{1,2, \ldots, 100\}: A ^{ n }+(\omega B )^{ n }= A + B \right\}$ ના ઘટકોની સંખ્યા  $..........$ થાય.

A

$17$

B

$15$

C

$14$

D

$13$

(JEE MAIN-2022)

Solution

$A=\left[\begin{array}{ccc}2 & -1 & -1 \\ 1 & 0 & -1 \\ 1 & -1 & 0\end{array}\right] \Rightarrow A^{2}=A \Rightarrow A^{n}=A$

Now, $B = A – I =\left[\begin{array}{lll}1 & -1 & -1 \\ 1 & -1 & -1 \\ 1 & -1 & -1\end{array}\right]$

$B ^{2}=- B$

$B ^{3}=- B ^{2}= B$

$B ^{5}= B$

$B ^{99}= B$

Also, $\omega^{31}=1$

So, $n =$ common of $\{1,3,5, \ldots, 99\}$ and

$\{3,6,9, \ldots, 99\}=17$

Standard 12
Mathematics

Similar Questions

Start a Free Trial Now

Confusing about what to choose? Our team will schedule a demo shortly.