14.Probability
hard

Let $E _{1}, E _{2}, E _{3}$ be three mutually exclusive events such that $P \left( E _{1}\right)=\frac{2+3 p }{6}, P \left( E _{2}\right)=\frac{2- p }{8}$ and $P \left( E _{3}\right)$ $=\frac{1- p }{2}$. If the maximum and minimum values of $p$ are $p _{1}$ and $p _{2}$, then $\left( p _{1}+ p _{2}\right)$ is equal to.

A

$\frac{2}{3}$

B

$\frac{5}{3}$

C

$\frac{5}{4}$

D

$1$

(JEE MAIN-2022)

Solution

$0 \leq P \left( E _{ i }\right) \leq 1$ for $i =1,2,3$

$-2 / 3 \leq p \leq 1$

$E _{1},E _{2},E _{3}$ are mutually exclusive

$P \left( E _{1}\right)+ P \left( E _{2}\right)+ P _{\left( E _{3}\right)} \leq 1$

$2 / 3 \leq p \leq 1$

$p _{1}=1, p _{2}=2 / 3$

$p _{1}+ p _{2}=5 / 3$

Standard 11
Mathematics

Similar Questions

Start a Free Trial Now

Confusing about what to choose? Our team will schedule a demo shortly.