Let $m_{1}, m_{2}$ be the slopes of two adjacent sides of a square of side a such that $a^{2}+11 a+3\left(m_{2}^{2}+m_{2}^{2}\right)=220$. If one vertex of the square is $(10(\cos \alpha-\sin \alpha), 10(\sin \alpha+\cos \alpha))$, where $\alpha \in\left(0, \frac{\pi}{2}\right)$ and the equation of one diagonal is $(\cos \alpha-\sin \alpha) x +(\sin \alpha+\cos \alpha) y =10$, then  $72 \left(\sin ^{4} \alpha+\cos ^{4} \alpha\right)+a^{2}-3 a+13$ is equal to.

  • [JEE MAIN 2022]
  • A

    $119$

  • B

    $128$

  • C

    $145$

  • D

    $155$

Similar Questions

The sides of a rhombus $ABCD$ are parallel to the lines, $x - y + 2\, = 0$ and $7x - y + 3\, = 0$. If the diagonals of the rhombus intersect at $P( 1, 2)$ and the vertex $A$ ( different from the origin) is on the $y$ axis, then the ordinate of $A$ is

  • [JEE MAIN 2018]

The vertices of $\Delta PQR$ are $P (2,1), Q (-2,3)$ and $R (4,5) .$ Find equation of the median through the vertex $R$.

A point starts moving from $(1, 2)$ and its projections on $x$ and $y$ - axes are moving with velocities of $3m/s$ and $2m/s$ respectively. Its locus is

Let $b, d>0$. The locus of all points $P(r, \theta)$ for which the line $P$ (where, $O$ is the origin) cuts the line $r \sin \theta=b$ in $Q$ such that $P Q=d$ is

  • [KVPY 2014]

Let $\mathrm{A}(-2,-1), \mathrm{B}(1,0), \mathrm{C}(\alpha, \beta)$ and $\mathrm{D}(\gamma, \delta)$ be the vertices of a parallelogram $A B C D$. If the point $C$ lies on $2 x-y=5$ and the point $D$ lies on $3 x-2 y=6$, then the value of $|\alpha+\beta+\gamma+\delta|$ is equal to_____.

  • [JEE MAIN 2024]