माना भुजा $a$ के एक वर्ग की संलग्र भुजाओं की प्रवणताएं $m _1, \quad m _2$ इस प्रकार है कि $a ^2+11 a +3\left( m _2^2+ m _2^2\right)=220$ है। यदि वर्ग का एक शीर्ष $(10(\cos \alpha-\sin \alpha), 10(\sin \alpha+\cos \alpha)), \alpha \in\left(0, \frac{\pi}{2}\right)$ है तथा एक विकर्ण का समीकरण $(\cos \alpha-\sin \alpha) x +(\sin \alpha+\cos \alpha) y =10$ है, तो $72\left(\sin ^4 \alpha+\cos ^4 \alpha\right)+a^2-3 a+13$ बराबर है।
$119$
$128$
$145$
$155$
यदि रेखाओं $\mathrm{x} \cos \theta+\mathrm{y} \sin \theta=7, \theta \in\left(0, \frac{\pi}{2}\right)$ के निर्देशांक अक्षो के बीच रेखाखंडो के मध्य बिंदुओं द्वारा बने वक्र पर एक बिंदु $\left(\alpha, \frac{7 \sqrt{3}}{3}\right)$ है, तो $\alpha$ बराबर है :
उस त्रिभुज का क्षेत्रफल, जो कि सरल रेखा $ax + by + c = 0,$ $(a,b,c \ne 0)$ तथा निर्देशांक्षों से घिरा हुआ है, होगा
माना शीर्षो $(3,-1),(1,3)$ तथा $(2,4)$ वाले त्रिभुज का केंन्द्रक $C$ है। माना रेखाओं $x +3 y -1=0$ तथा $3 x - y +1=0$ का प्रतिच्छेदन बिन्दु $P$ है, तो बिन्दुओं $C$ तथा $P$ से गुजरने वाली रेखा, निम्न में से किस बिन्दु से भी गुजरती है
मान लीजिए $O=(0,0) ; x$ - एवं $y$-अक्ष पर दो बिंदु क्रमशः $A$ and $B$ ऐसे हैं कि $\angle O B A=60^{\circ}$ है. मान लीजिए कि बिंदु $D$ पहले चतुर्थाश $(quadrant)$ में इस प्रकार है कि $O A D$ एक समबाहु त्रिभुज है. $D B$ की प्रबणता क्या होगी ?
$L _1$ और $L _2$ द्वारा परिभाषित रेखाओं
$L _1: x \sqrt{2}+ y -1=0 \text { और } L _2: x \sqrt{2}- y +1=0$
पर विचार कीजिए। किसी नियत अचर (fixed constant) $\lambda$ के लिए, मान लीजिए कि $C$ एक बिन्दु $P$ का ऐसा बिन्दुपथ (locus) है कि $P$ से $L _1$ की दूरी और $P$ से $L _2$ की दूरी का गुणनफल $\lambda^2$ है। रेखा $y =2 x +1, C$ को दो बिन्दुओं $R$ और $S$ पर मिलती है, जहाँ $R$ और $S$ के बीच की दूरी $\sqrt{270}$ है।
मान लीजिए कि RS का लंब समद्विभाजक (perpendicular bisector), $C$ को दो भिन्न बिन्दुओं R' और $S ^{\prime}$ पर मिलता है। मान लीजिए कि $R ^{\prime}$ और $S ^{\prime}$ के बीच की दूरी के वर्ग (square of the distance) का मान $D$ है।
($1$) $\lambda^2$ का मान. . . . . है।
($2$) $D$ का मान. . . . . है।