Let $f: R \rightarrow R$ be a function defined by $f(x)=\left\{\begin{array}{l}\frac{\sin \left(x^2\right)}{x} \text { if } x \neq 0 \\ 0 \text { if } x=0\end{array}\right\}$ Then, at $x=0, f$ is

 

  • [KVPY 2019]
  • A

    not continuous

  • B

    continuous but not differentiable

  • C

    differentiable and the derivative is not continuous

  • D

    differentiable and the derivative is continuous

Similar Questions

If $a+\alpha=1, b+\beta=2$ and $\operatorname{af}(x)+\alpha f\left(\frac{1}{x}\right)=b x+\frac{\beta}{x}, x \neq 0,$ then the value of expression $\frac{ f ( x )+ f \left(\frac{1}{ x }\right)}{ x +\frac{1}{ x }}$ is ..... .

  • [JEE MAIN 2021]

Show that the function $f: R_* \rightarrow R_*$ defined by $f(x)=\frac{1}{x}$ is one-one and onto, where $R_*$ is the set of all non-zero real numbers. Is the result true, if the domain $R_*$ is replaced by $N$ with co-domain being same as $R _*$ ?

Function ${\sin ^{ - 1}}\sqrt x $ is defined in the interval

A real valued function $f(x)$ satisfies the function equation $f(x - y) = f(x)f(y) - f(a - x)f(a + y)$ where a is a given constant and $f(0) = 1$, $f(2a - x)$ is equal to

  • [AIEEE 2005]

If $f(x) = \sin \log x$, then the value of $f(xy) + f\left( {\frac{x}{y}} \right) - 2f(x).\cos \log y$ is equal to