Let $f: R \rightarrow R$ be a function defined by $f(x)=\left\{\begin{array}{l}\frac{\sin \left(x^2\right)}{x} \text { if } x \neq 0 \\ 0 \text { if } x=0\end{array}\right\}$ Then, at $x=0, f$ is

 

  • [KVPY 2019]
  • A

    not continuous

  • B

    continuous but not differentiable

  • C

    differentiable and the derivative is not continuous

  • D

    differentiable and the derivative is continuous

Similar Questions

If $f\left( x \right) + 2f\left( {\frac{1}{x}} \right) = 3x,x \ne 0$ and $S = \left\{ {x \in R:f\left( x \right) = f\left( { - x} \right)} \right\}$;then $S :$

  • [JEE MAIN 2016]

If $f (x) =$ $\left[ \begin{gathered}  {x^2}\,\,\,\,\,\,\,\,\,\,\,\,if\,\,\,\,x \leqslant \,{x_0} \hfill \\   ax + b\,\,\,\,\,if\,\,\,\,x\, > \,{x_0} \hfill \\ \end{gathered}  \right.$ derivable $\forall \,x\, \in \,R\,\,$ then the values of $a$ and $b$ are respectively

The range of values of the function $f\left( x \right) = \frac{1}{{2 - 3\sin x}}$ is

If $f(x + ay,\;x - ay) = axy$, then $f(x,\;y)$ is equal to

If $f:R \to R$ and $g:R \to R$ are given by $f(x) = \;|x|$ and $g(x) = \;|x|$ for each $x \in R$, then $\{ x \in R\;:g(f(x)) \le f(g(x))\} = $