Let $x^2=4 k y, k>0$ be a parabola with vertex $A$. Let $B C$ be its latusrectum. An ellipse with centre on $B C$ touches the parabola at $A$, and cuts $B C$ at points $D$ and $E$ such that $B D=D E=E C(B, D, E, C$ in that order). The eccentricity of the ellipse is
$\frac{1}{\sqrt{2}}$
$\frac{1}{\sqrt{3}}$
$\frac{\sqrt{5}}{3}$
$\frac{\sqrt{3}}{2}$
A man running a racecourse notes that the sum of the distances from the two flag posts from him is always $10 \,m$ and the distance between the flag posts is $8\, m$ Find the equation of the posts traced by the man.
Find the equation for the ellipse that satisfies the given conditions: Ends of major axis $(0,\, \pm \sqrt{5})$ ends of minor axis $(±1,\,0)$
The locus of the middle point of the intercept of the tangents drawn from an external point to the ellipse ${x^2} + 2{y^2} = 2$ between the co-ordinates axes, is
Tangents at extremities of latus rectum of ellipse $3x^2 + 4y^2 = 12$ form a rhombus of area (in $sq.\ units$) -
If $m$ is the slope of a common tangent to the curves $\frac{x^{2}}{16}+\frac{y^{2}}{9}=1$ and $x^{2}+y^{2}=12$, then $12\; m ^{2}$ is equal to