Gujarati
10-2. Parabola, Ellipse, Hyperbola
normal

Let $x^2=4 k y, k>0$ be a parabola with vertex $A$. Let $B C$ be its latusrectum. An ellipse with centre on $B C$ touches the parabola at $A$, and cuts $B C$ at points $D$ and $E$ such that $B D=D E=E C(B, D, E, C$ in that order). The eccentricity of the ellipse is

A

$\frac{1}{\sqrt{2}}$

B

$\frac{1}{\sqrt{3}}$

C

$\frac{\sqrt{5}}{3}$

D

$\frac{\sqrt{3}}{2}$

(KVPY-2018)

Solution

(c)

Given, $x^2=4 k y$

$B C$ is latusrectum.

$B C=4 k$

$B D=D E=E C$

$D E=\frac{B C}{3}=\frac{4 k}{3}$

$P$ is centre of ellipse.

$P E=\frac{2 k}{3}$

$O P^2=k$

$\because$ Eccentricity of ellipse

$\sqrt{1-\frac{P E^2}{O P^2}}=\sqrt{1-\frac{4 k^2}{9 k^2}}$

$e=\sqrt{\frac{9-4}{9}}=\frac{\sqrt{5}}{3}$

Standard 11
Mathematics

Similar Questions

Start a Free Trial Now

Confusing about what to choose? Our team will schedule a demo shortly.