मान लीजिए कि $x^2=4 k y, k > 0$ एक परवलय है, जिसका शीर्ष $A$ है। मान लें कि $B C$ इसका नाभि लंब $(latus\,rectum)$ है। एक दीर्घवृत, जिसका केंद्र $B C$ पर है और परवलय को $A$ पर छूता है, $B C$ को $D$ एवं $E$ बिन्दुओं पर इस प्रकार काटता है कि $B D=D E=E C(B, D, E, C$ के क्रम में)। दीर्घवृत की उत्केन्द्रता $(eccentricity)$ निम्न है :
$\frac{1}{\sqrt{2}}$
$\frac{1}{\sqrt{3}}$
$\frac{\sqrt{5}}{3}$
$\frac{\sqrt{3}}{2}$
मूल अक्षों के सापेक्ष दीर्घवृत्त जिसकी नाभिलम्ब $8$ है और जिसकी उत्केन्द्रता $\frac{1}{{\sqrt 2 }}$है, का समीकरण होगा
दीर्घवृत्त $3{x^2} + 2{y^2} = 5$ पर बिन्दु $(1, 2)$ से डाली गयी स्पशियों के बीच का कोण होगा
उस दीर्घवृत्त का समीकरण जिसके शीर्ष $( \pm 5,\;0)$ तथा नाभियाँ $( \pm 4,\;0)$ हैं, होगा
माना $\mathrm{C}$ सबसे बड़ा वृत्त है, जिसका केन्द्र $(2,0)$ पर है तथा जो दीर्घवृत $\frac{\mathrm{x}^2}{36}+\frac{\mathrm{y}^2}{16}=1$ के अंतर्गत है। यदि बिन्दु $(1, \alpha)$ वृत्त $C$ पर है, तो $10 \alpha^2$ बराबर है_______________.
दीर्घवृत्त $4{x^2} + 9{y^2} - 16x - 54y + 61 = 0$के सापेक्ष बिन्दु $(1, 3)$ की स्थिति है