Two sets $A$ and $B$ are as under:

$A = \{ \left( {a,b} \right) \in R \times R:\left| {a - 5} \right| < 1 \,\,and\,\,\left| {b - 5} \right| < 1\} $; $B = \left\{ {\left( {a,b} \right) \in R \times R:4{{\left( {a - 6} \right)}^2} + 9{{\left( {b - 5} \right)}^2} \le 36} \right\}$ then : . . . . .

  • [JEE MAIN 2018]
  • A

    $A \subset B$

  • B

    $A \cap B = \emptyset $

  • C

    neither $A \subset B$ nor $B \subset A$ 

  • D

    $B \subset A$

Similar Questions

If the normal to the ellipse $3x^2 + 4y^2 = 12$ at a point $P$ on it is parallel to the line, $2x + y = 4$ and the tangent to the ellipse at $P$ passes through $Q(4, 4)$ then $PQ$ is equal to

  • [JEE MAIN 2019]

A common tangent to $9x^2 + 16y^2 = 144 ; y^2 - x + 4 = 0 \,\,\&\,\, x^2 + y^2 - 12x + 32 = 0$ is :

For an ellipse $\frac{{{x^2}}}{9} + \frac{{{y^2}}}{4} = 1$ with vertices $A$  and $ A', $ tangent drawn at the point $P$  in the first quadrant meets the $y-$axis in $Q $ and the chord $ A'P$ meets the $y-$axis in $M.$  If $ 'O' $ is the origin then $OQ^2 - MQ^2$  equals to

Let the foci and length of the latus rectum of an ellipse $\frac{\mathrm{x}^2}{\mathrm{a}^2}+\frac{\mathrm{y}^2}{\mathrm{~b}^2}=1, \mathrm{a}>\mathrm{b}$ be $( \pm 5,0)$ and $\sqrt{50}$, respectively. Then, the square of the eccentricity of the hyperbola $\frac{\mathrm{x}^2}{\mathrm{~b}^2}-\frac{\mathrm{y}^2}{\mathrm{a}^2 \mathrm{~b}^2}=1$ equals

  • [JEE MAIN 2024]

The equation to the locus of the middle point of the portion of the tangent to the ellipse $\frac{{{x^2}}}{{16}}$$+$ $\frac{{{y^2}}}{9}$ $= 1$  included between the co-ordinate axes is the curve :