Gujarati
8. Sequences and Series
normal

Let $C_0$ be a circle of radius $I$ . For $n \geq 1$, let $C_n$ be a circle whose area equals the area of a square inscribed in $C_{n-1} .$ Then, $\sum \limits_{i=0}^{\infty}$ Area $\left(C_i\right)$ equals

A

$\pi^2$

B

$\frac{\pi-2}{\pi^2}$

C

$\frac{1}{\pi^2}$

D

$\frac{\pi^2}{\pi-2}$

(KVPY-2014)

Solution

(d)

We have, $C_0$ be a circle of radius $1.$ $C_n$ be a circle whose area equals the area of a square inscribed in $C_{n-1}$.

Let $a_0, a_1, a_2, a_3, \ldots, a_n$ be the length of sides of square inscribed in circle $C_0, C_1, C_2, \ldots, C_n$ and $r_0, r_1, r_2, \ldots, r_n$ be radius of circle.

$2 a_0^2 =4$

$a _0^2 =2$

$\pi r_1^2 =a_0^2$

$r_1^2 =\frac{2}{\pi}$

$2 a _1^2 =\left(2 r_1\right)^2=4 r_1^2$

$a _1^2 =\frac{4}{\pi}$

$\pi r_2^2 = c _1^2$

$\Rightarrow r_2^2=\frac{4}{\pi^2}$

Similarly, $r_n^2=\frac{2^2}{\pi^n}$

Now, $\sum \limits_{i=0}^{\infty}$ Area $\left(C_{i j}\right)$

$=\pi\left(-1+\frac{2}{\pi}+\frac{2^2}{\pi^2}+\frac{2^3}{\pi^3}+\ldots\right)$

$=\pi\left(\frac{1}{1-\frac{2}{\pi}}\right)$

$\left[S_{\infty}=1+r+r^2+\ldots=\frac{1}{1-r}\right]$

$=\frac{\pi^2}{\pi-2}$ 

Standard 11
Mathematics

Similar Questions

Start a Free Trial Now

Confusing about what to choose? Our team will schedule a demo shortly.