The ${4^{th}}$ term of a $G.P.$ is square of its second term, and the first term is $-3$ Determine its $7^{\text {th }}$ term.
Let $a$ be the first term and $r$ be the common ratio of the $G.P. $
$\therefore a=-3$
It is known that, $a_{n}=a r^{n-1}$
$\therefore a_{4}=a r^{3}=(-3) r^{3}$
$a_{2}=a r^{2}=(-3) r$
According to the given condition,
$(-3) r^{3}=[(-3) r]^{2}$
$\Rightarrow-3 r^{3}=9 r^{2} \Rightarrow r=-3 a_{7}=a r^{7-1}=a r^{6}=(-3)(-3)^{6}=-(3)^{7}=-2187$
Thus, the seventh term of the $G.P.$ is $-2187 .$
If $\frac{a+b x}{a-b x}=\frac{b+c x}{b-c x}=\frac{c+d x}{c-d x}(x \neq 0),$ then show that $a, b, c$ and $d$ are in $G.P.$
If $x,\,2x + 2,\,3x + 3,$are in $G.P.$, then the fourth term is
The value of $0.\mathop {234}\limits^{\,\,\, \bullet \,\, \bullet } $ is
Let $a_{n}$ be the $n^{\text {th }}$ term of a G.P. of positive terms.
If $\sum\limits_{n=1}^{100} a_{2 n+1}=200$ and $\sum\limits_{n=1}^{100} a_{2 n}=100,$ then $\sum\limits_{n=1}^{200} a_{n}$ is equal to
$0.14189189189….$ can be expressed as a rational number