Let $b, d>0$. The locus of all points $P(r, \theta)$ for which the line $P$ (where, $O$ is the origin) cuts the line $r \sin \theta=b$ in $Q$ such that $P Q=d$ is
$(r-d) \sin \theta=b$
$(r \pm d) \sin \theta=b$
$(r-d) \cos \theta=b$
$(r \pm d) \cos \theta=b$
Draw a quadrilateral in the Cartesian plane, whose vertices are $(-4,5),(0,7) (5,-5)$ and $(-4,-2) .$ Also, find its area.
In a right triangle $ABC$, right angled at $A$, on the leg $AC $ as diameter, a semicircle is described. The chord joining $A$ with the point of intersection $D$ of the hypotenuse and the semicircle, then the length $AC$ equals to
A variable straight line passes through the points of intersection of the lines, $x + 2y = 1$ and $2x - y = 1$ and meets the co-ordinate axes in $A\,\, \&\,\, B$ . The locus of the middle point of $AB$ is :
Let $m, n$ be real numbers such that $0 \leq m \leq \sqrt{3}$ and $-\sqrt{3} \leq n \leq 0$. The minimum possible area of the region of the plane consisting of points $(x, y)$ satisfying in inequalities $y \geq 0, y-3 \leq m x$, $y -3 \leq nx$, is
Let a triangle be bounded by the lines $L _{1}: 2 x +5 y =10$; $L _{2}:-4 x +3 y =12$ and the line $L _{3}$, which passes through the point $P (2,3)$, intersect $L _{2}$ at $A$ and $L _{1}$ at $B$. If the point $P$ divides the line-segment $A B$, internally in the ratio $1: 3$, then the area of the triangle is equal to