- Home
- Standard 11
- Mathematics
9.Straight Line
normal
Let $b, d>0$. The locus of all points $P(r, \theta)$ for which the line $P$ (where, $O$ is the origin) cuts the line $r \sin \theta=b$ in $Q$ such that $P Q=d$ is
A
$(r-d) \sin \theta=b$
B
$(r \pm d) \sin \theta=b$
C
$(r-d) \cos \theta=b$
D
$(r \pm d) \cos \theta=b$
(KVPY-2014)
Solution

(b)
We have, $P \cdot(r, \theta)=(x, y)$
Equation of line $O P$ is
$y=x \tan \theta$
$O P$ cut the line $r \sin \theta=b$
i.e. $y=b$
Given $P Q=d$
$\therefore$ point $P$ is $y=b \pm d \sin \theta$
$\Rightarrow r \sin \theta=b \pm d \sin \theta \Rightarrow(r \pm d) \sin \theta=b$
Hence, locus of $P(r, \theta)$ is $(r \pm d) \sin \theta=b$
Standard 11
Mathematics