One diagonal of a square is along the line $8x - 15y = 0$ and one of its vertex is $(1, 2)$ Then the equation of the sides of the square passing through this vertex, are

  • [IIT 1962]
  • A

    $23x + 7y = 9,\;7x + 23y = 53$

  • B

    $23x - 7y + 9 = 0,\;7x + 23y + 53 = 0$

  • C

    $23x - 7y - 9 = 0,\;7x + 23y - 53 = 0$

  • D

    None of these

Similar Questions

One side of a rectangle lies along the line $4x + 7y + 5 = 0.$ Two of its vertices are $(-3, 1)$ and $(1, 1)$. Then the equations of other three sides are

  • [IIT 1978]

The equation of straight line passing through $( - a,\;0)$ and making the triangle with axes of area ‘$T$’ is

The circumcentre of a triangle lies at the origin and its centroid is the mid point of the line segment joining the points $(a^2 + 1 , a^2 + 1 )$ and $(2a, - 2a)$, $a \ne 0$. Then for any $a$ , the orthocentre of this triangle lies on the line

  • [JEE MAIN 2014]

Let $PS$ be the median of the triangle with vertices $P(2,2) , Q(6,-1) $ and $R(7,3) $. The equation of the line passing through $(1,-1) $ and parallel to $PS $ is :

  • [IIT 2000]

The diagonal passing through origin of a quadrilateral formed by $x = 0,\;y = 0,\;x + y = 1$ and $6x + y = 3,$ is

  • [IIT 1973]