कार्तीय तल का मूल बिन्दु $O$ है । आपको वास्तविक संख्यायें $b, d > 0$ दी गई हैं |रेखाखण्ड $O P$, जहां $P(r, \theta)$ एक चर बिंदु है, रेखा $r \sin \theta=b$ को बिन्दु $Q$ पर इस प्रकार काटता है कि $P Q=d \mid$ तब ऐसे सभी $P(r, \theta)$ बिन्दुओं का बिंदुपथ होगा:
$(r-d) \sin \theta=b$
$(r \pm d) \sin \theta=b$
$(r-d) \cos \theta=b$
$(r \pm d) \cos \theta=b$
एक बिन्दु इस प्रकार गति करता है कि इसकी बिन्दु $(4,\,0)$ से दूरी सरल रेखा $x = 16$ से दूरी की आधी रहती है, तो बिन्दु का बिन्दुपथ है
दर्शाइए कि एक गतिमान बिंदु, जिसकी दो रेखाओं $3 x-2 y=5$ और $3 x+2 y=5$ से दूरीयाँ समान है, का पथ एक रेखा है।
एक समबाहु त्रिभुज के आधार का समीकरण $2x - y = 1$ और शीर्ष $(-1, 2)$ है, तब त्रिभुज की भुजा की लम्बाई होगी
माना एक समांतर चतुर्भुज $\mathrm{ABCD}$ के शीर्ष $\mathrm{A}(-2,-1), \mathrm{B}(1,0), \mathrm{C}(\alpha, \beta)$ तथा $\mathrm{D}(\gamma, \delta)$ है। यदि बिंदु $C$ रेखा $2 x-y=5$ पर है तथा बिंदु $D$, रेखा $3 x-2 y=6$ पर है तो $|\alpha+\beta+\gamma+\delta|$ का मान बराबर है ...............
किसी समद्विबाहु त्रिभुज के आधार के दो शीर्ष $(2a,\;0)$ व $(0,\;a)$ हैं। यदि त्रिभुज की एक भुजा $x = 2a$ है, तो दूसरी भुजा का समीकरण है