Gujarati
Hindi
Trigonometrical Equations
normal

Let $A=\left\{\theta \in R \mid \cos ^2(\sin \theta)+\sin ^2(\cos \theta)=1\right\}$ and $B=\{\theta \in R \mid \cos (\sin \theta) \sin (\cos \theta)=0\}$. Then, $A \cap B$ 

A

is the empty set

B

has exactly one clement

C

has more than one but finitely many elements

D

has infinitely many elements

(KVPY-2011)

Solution

(a)

We have,

$A=\left\{\theta \in R \mid \cos ^2(\sin \theta)+\sin ^2(\cos \theta)=1\right\}$

$\therefore \cos ^2(\sin \theta)+\sin ^2(\cos \theta)=1$

$\therefore \quad \sin \theta=\cos \theta \Rightarrow \tan \theta=1$

$\Rightarrow \quad \theta=n \pi+\frac{\pi}{4}$

$\quad B=\{\theta \in R \mid \cos (\sin \theta) \sin (\cos \theta)=0$

$\quad \cos (\sin \theta) \sin (\cos \theta)=0$

$\quad \cos (\sin \theta)=0 \text { or } \sin (\cos \theta)=0$

$\quad \sin \theta=(2 n+1) \frac{\pi}{2} \text { or } \cos \theta=2 n \pi$

$\therefore \text { Clearly } A \cap B=0$

$\therefore A \cap B \text { is an empty set. }$

Standard 11
Mathematics

Similar Questions

Start a Free Trial Now

Confusing about what to choose? Our team will schedule a demo shortly.