Let $S={\theta \in\left(0, \frac{\pi}{2}\right): \sum_{m=1}^{9}}$
$\sec \left(\theta+(m-1) \frac{\pi}{6}\right) \sec \left(\theta+\frac{m \pi}{6}\right)=-\frac{8}{\sqrt{3}}$ Then.
$S =\left\{\frac{\pi}{12}\right\}$
$S =\left\{\frac{2 \pi}{3}\right\}$
$\sum_{\theta \in S} \theta=\frac{\pi}{2}$
$\sum_{\theta \in S} \theta=\frac{3 \pi}{4}$
For $n \in Z$ , the general solution of the equation
$(\sqrt 3 - 1)\,\sin \,\theta \, + \,(\sqrt 3 + 1)\,\cos \theta \, = \,2$ is
If $(1 + \tan \theta )(1 + \tan \phi ) = 2$, then $\theta + \phi =$ ....$^o$
General solution of $\tan 5\theta = \cot 2\theta $ is $($ where $n \in Z )$
The number of distinct solutions of the equation $\log _{\frac{1}{2}}|\sin x|=2-\log _{\frac{1}{2}}|\cos x|$ in the interval $[0,2 \pi],$ is
One root of the equation $\cos x - x + \frac{1}{2} = 0$ lies in the interval