Let $f$ be a function defined on the set of all positive integers such that $f(x y)=f(x)+f(y)$ for all positive integers $x, y$. If $f(12)=24$ and $f(8)=15$. The value of $f(48)$ is

  • [KVPY 2016]
  • A

    $31$

  • B

    $32$

  • C

    $33$

  • D

    $34$

Similar Questions

If $f(x + ay,\;x - ay) = axy$, then $f(x,\;y)$ is equal to

The domain of the function $f(x) = \frac{{{{\sin }^{ - 1}}(x - 3)}}{{\sqrt {9 - {x^2}} }}$ is

  • [AIEEE 2004]

Let $R _{1}$ and $R _{2}$ be two relations defined as follows :

$R _{1}=\left\{( a , b ) \in R ^{2}: a ^{2}+ b ^{2} \in Q \right\}$ and $R _{2}=\left\{( a , b ) \in R ^{2}: a ^{2}+ b ^{2} \notin Q \right\}$

where $Q$ is the set of all rational numbers. Then

  • [JEE MAIN 2020]

The domain of ${\sin ^{ - 1}}({\log _3}x)$ is

Let $S=\{1,2,3,4,5,6\}$. Then the number of oneone functions $f: S \rightarrow P(S)$, where $P(S)$ denote the power set of $S$, such that $f(n) \subset f(m)$ where $n < m$ is $..................$

  • [JEE MAIN 2023]