1.Relation and Function
hard

If $a+\alpha=1, b+\beta=2$ and $\operatorname{af}(x)+\alpha f\left(\frac{1}{x}\right)=b x+\frac{\beta}{x}, x \neq 0,$ then the value of expression $\frac{ f ( x )+ f \left(\frac{1}{ x }\right)}{ x +\frac{1}{ x }}$ is ..... .

A

$2$

B

$1$

C

$4$

D

$5$

(JEE MAIN-2021)

Solution

$\operatorname{af}(x)+\alpha f\left(\frac{1}{x}\right)=b x+\frac{\beta}{x}…..(1)$

replace $x$ by $\frac{1}{x}$

af $\left(\frac{1}{x}\right)+\alpha f(x)=\frac{b}{x}+\beta x…..(2)$

$(1)+(2)$

$(a+\alpha) f(x)+(a+\alpha) f\left(\frac{1}{x}\right)=x(b+\beta)+(b+\beta) \frac{1}{x}$

$\frac{f(x)+f\left(\frac{1}{x}\right)}{x+\frac{1}{x}}=\frac{b+\beta}{a+\alpha}=\frac{2}{1}=2$

Standard 12
Mathematics

Similar Questions

Start a Free Trial Now

Confusing about what to choose? Our team will schedule a demo shortly.