Let $A B C D$ be a square of side length $1$ . Let $P, Q, R, S$ be points in the interiors of the sides $A D, B C, A B, C D$ respectively, such that $P Q$ and $R S$ intersect at right angles. If $P Q=\frac{3 \sqrt{3}}{4}$, then $R S$ equals

  • [KVPY 2015]
  • A

    $\frac{2}{\sqrt{3}}$

  • B

    $\frac{3 \sqrt{3}}{4}$

  • C

    $\frac{\sqrt{2}+1}{2}$

  • D

    $4-2 \sqrt{2}$

Similar Questions

The points $(1, 3)$ and $(5, 1)$ are the opposite vertices of a rectangle. The other two vertices lie on the line $y = 2x + c,$ then the value of c will be

  • [IIT 1981]

The locus of a point $P$ which divides the line joining $(1, 0)$ and $(2\cos \theta ,2\sin \theta )$ internally in the ratio $2 : 3$ for all $\theta $, is a

  • [IIT 1986]

The equations of two sides $\mathrm{AB}$ and $\mathrm{AC}$ of a triangle $\mathrm{ABC}$ are $4 \mathrm{x}+\mathrm{y}=14$ and $3 \mathrm{x}-2 \mathrm{y}=5$, respectively. The point $\left(2,-\frac{4}{3}\right)$ divides the third side $\mathrm{BC}$ internally in the ratio $2: 1$. The equation of the side $\mathrm{BC}$ is :

  • [JEE MAIN 2024]

The opposite angular points of a square are $(3,\;4)$ and $(1,\; - \;1)$. Then the co-ordinates of other two points are

Let the area of a $\triangle PQR$ with vertices $P (5,4), Q (-2,4)$ and $R(a, b)$ be $35$ square units. If its orthocenter and centroid are $O\left(2, \frac{14}{5}\right)$ and $C(c, d)$ respectively, then $c+2 d$ is equal to :

  • [JEE MAIN 2025]