- Home
- Standard 11
- Mathematics
The line $2x + 3y = 12$ meets the $x -$ axis at $A$ and the $y -$ axis at $B$ . The line through $(5, 5)$ perpendicular to $AB$ meets the $x -$ axis, $y -$ axis $\&$ the line $AB$ at $C, D, E$ respectively. If $O$ is the origin, then the area of the $OCEB$ is :
$\frac{{20}}{3}$ sq. units
$\frac{{23}}{3}$ sq. units
$\frac{{26}}{3}$ sq. units
$\frac{{5\sqrt {52} }}{9}$ sq. units
Solution

Equation of line $ED$ is $3x – 2y = 5$
$\therefore$ pt $E$ is $(3, 2) C(5/3, 0)$
now area of $OCEB = AR(\Delta OBC+\Delta BEC)$
$\Delta OBC =$ $\frac{1}{2} × 4 ×\frac{5}{3} =\frac{10}{3} ….(1)$
$\Delta BEC = (BE × CE)$
$\frac{1}{2} \times \sqrt {13} \times \frac{2}{3}\sqrt {13} = \frac{{13}}{3}$ $= ….(2)$
Area $OCEB =$ $\frac{{10}}{3}$ + $\frac{{13}}{3}$ = $\frac{{23}}{3}$ sq. units