9.Straight Line
normal

The line $2x + 3y = 12$ meets the $x -$ axis at $A$ and the $y -$ axis at $B$ . The line through $(5, 5)$ perpendicular to $AB$ meets the $x -$ axis, $y -$ axis $\&$ the line $AB$ at $C, D, E$ respectively. If $O$ is the origin, then the area of the $OCEB$ is :

A

$\frac{{20}}{3}$ sq. units

B

$\frac{{23}}{3}$ sq. units

C

$\frac{{26}}{3}$ sq. units

D

$\frac{{5\sqrt {52} }}{9}$ sq. units

Solution

Equation of line $ED$ is $3x – 2y = 5$

$\therefore$  pt $E$ is $(3, 2) C(5/3, 0)$

now area of $OCEB = AR(\Delta OBC+\Delta BEC)$

$\Delta OBC =$ $\frac{1}{2} × 4 ×\frac{5}{3} =\frac{10}{3} ….(1)$

$\Delta BEC = (BE × CE)$

$\frac{1}{2} \times \sqrt {13}  \times \frac{2}{3}\sqrt {13}  = \frac{{13}}{3}$ $= ….(2)$

Area $OCEB =$ $\frac{{10}}{3}$ + $\frac{{13}}{3}$ = $\frac{{23}}{3}$ sq. units

Standard 11
Mathematics

Similar Questions

Start a Free Trial Now

Confusing about what to choose? Our team will schedule a demo shortly.