The equations of two sides $\mathrm{AB}$ and $\mathrm{AC}$ of a triangle $\mathrm{ABC}$ are $4 \mathrm{x}+\mathrm{y}=14$ and $3 \mathrm{x}-2 \mathrm{y}=5$, respectively. The point $\left(2,-\frac{4}{3}\right)$ divides the third side $\mathrm{BC}$ internally in the ratio $2: 1$. The equation of the side $\mathrm{BC}$ is :
$x-6 y-10=0$
$x-3 y-6=0$
$x+3 y+2=0$
$x+6 y+6=0$
The pair of straight lines $x^2 - 4xy + y^2 = 0$ together with the line $x + y + 4 = 0$ form a triangle which is :
If two vertices of a triangle are $(5, -1)$ and $( - 2, 3)$ and its orthocentre is at $(0, 0)$, then the third vertex
Area of the parallelogram whose sides are $x\cos \alpha + y\sin \alpha = p$ $x\cos \alpha + y\sin \alpha = q,\,\,$ $x\cos \beta + y\sin \beta = r$ and $x\cos \beta + y\sin \beta = s$ is
Consider a triangle $\mathrm{ABC}$ having the vertices $\mathrm{A}(1,2), \mathrm{B}(\alpha, \beta)$ and $\mathrm{C}(\gamma, \delta)$ and angles $\angle \mathrm{ABC}=\frac{\pi}{6}$ and $\angle \mathrm{BAC}=\frac{2 \pi}{3}$. If the points $\mathrm{B}$ and $\mathrm{C}$ lie on the line $\mathrm{y}=\mathrm{x}+4$, then $\alpha^2+\gamma^2$ is equal to....................
Without using the Pythagoras theorem, show that the points $(4,4),(3,5)$ and $(-1,-1)$ are vertices of a right angled triangle.