- Home
- Standard 12
- Mathematics
3 and 4 .Determinants and Matrices
hard
Let $S_1$ and $S_2$ be respectively the sets of all $a \in R -\{0\}$ for which the system of linear equations
$a x+2 a y-3 a z=1$
$(2 a+1) x+(2 a+3) y+(a+1) z=2$
$(3 a+5) x+(a+5) y+(a+2) z=3$
has unique solution and infinitely many solutions. Then
A
$n \left( S _1\right)=2$ and $S _2$ is an infinite set
B
$S_1$ is an infinite set an $n\left(S_2\right)=2$
C
$S _1=\Phi$ and $S _2= R -\{0\}$
D
$S _1= R -\{0\}$ and $S _2=\Phi$
(JEE MAIN-2023)
Solution
$\begin{array}{l}\Delta=\left|\begin{array}{lll}a & 2 a & -3 a \\ 2 a+1 & 2 a+3 & a+1 \\ 3 a+5 & a+5 & a+2\end{array}\right| \\ =a\left(15 a^2+31 a+36\right)=0 \Rightarrow a=0 \\ \Delta \neq 0 \text { for all } a \in R-\{0\} \\ \text { Hence } S_1=R-\{0\} \quad S_2=\Phi\end{array}$
Standard 12
Mathematics