Let $S_1$ and $S_2$ be respectively the sets of all $a \in R -\{0\}$ for which the system of linear equations
$a x+2 a y-3 a z=1$
$(2 a+1) x+(2 a+3) y+(a+1) z=2$
$(3 a+5) x+(a+5) y+(a+2) z=3$
has unique solution and infinitely many solutions. Then
$n \left( S _1\right)=2$ and $S _2$ is an infinite set
$S_1$ is an infinite set an $n\left(S_2\right)=2$
$S _1=\Phi$ and $S _2= R -\{0\}$
$S _1= R -\{0\}$ and $S _2=\Phi$
If the system of linear equations $x + ky + 3z = 0;3x + ky - 2z = 0$ ; $2x + 4y - 3z = 0$ has a non-zero solution $\left( {x,y,z} \right)$ then $\frac{{xz}}{{{y^2}}} = $. . . . .
The maximum value of
$f(x)=\left|\begin{array}{ccc} \sin ^{2} x & 1+\cos ^{2} x & \cos 2 x \\ 1+\sin ^{2} x & \cos ^{2} x & \cos 2 x \\ \sin ^{2} x & \cos ^{2} x & \sin 2 x \end{array}\right|, x \in R \text { is }$
The value of the determinant $\left| {\,\begin{array}{*{20}{c}}1&2&3\\3&5&7\\8&{14}&{20}\end{array}\,} \right|$is
If $a\, -\, 2b + c = 1$ , then value of $\left| {\begin{array}{*{20}{c}}
{x + 1}&{x + 2}&{x + a} \\
{x + 2}&{x + 3}&{x + b} \\
{x + 3}&{x + 4}&{x + c}
\end{array}} \right|$ is
${x_1} + 2{x_2} + 3{x_3} = a2{x_1} + 3{x_2} + {x_3} = $ $b3{x_1} + {x_2} + 2{x_3} = c$ this system of equations has