3 and 4 .Determinants and Matrices
hard

Let $S_1$ and $S_2$ be respectively the sets of all $a \in R -\{0\}$ for which the system of linear equations

$a x+2 a y-3 a z=1$

$(2 a+1) x+(2 a+3) y+(a+1) z=2$

$(3 a+5) x+(a+5) y+(a+2) z=3$

has unique solution and infinitely many solutions. Then

A

$n \left( S _1\right)=2$ and $S _2$ is an infinite set

B

$S_1$ is an infinite set an $n\left(S_2\right)=2$

C

$S _1=\Phi$ and $S _2= R -\{0\}$

D

$S _1= R -\{0\}$ and $S _2=\Phi$

(JEE MAIN-2023)

Solution

$\begin{array}{l}\Delta=\left|\begin{array}{lll}a & 2 a & -3 a \\ 2 a+1 & 2 a+3 & a+1 \\ 3 a+5 & a+5 & a+2\end{array}\right| \\ =a\left(15 a^2+31 a+36\right)=0 \Rightarrow a=0 \\ \Delta \neq 0 \text { for all } a \in R-\{0\} \\ \text { Hence } S_1=R-\{0\} \quad S_2=\Phi\end{array}$

Standard 12
Mathematics

Similar Questions

Start a Free Trial Now

Confusing about what to choose? Our team will schedule a demo shortly.