माना सभी $\mathrm{a} \in \mathrm{R}-\{0\}$, जिनके लिए रैखिक समीकरण निकाय $a x+2 a y-3 a z=1$

$ (2 a+1) x+(2 a+3) y+(a+1) z=2 $

$ (3 a+5) x+(a+5) y+(a+2) z=3$

का केवल एक हल है तथा अनंत हल है, के समुच्चय क्रमशः $S_1$ तथा $S_2$ है। तो

  • [JEE MAIN 2023]
  • A

    $n\left(\mathrm{~S}_1\right)=2$ तथा $\mathrm{S}_2$ एक अपरिमित समुच्चय है।

  • B

     $S_1$ एक अंपरिमित समुच्चय है तथा $n\left(S_2\right)=2$ है।

  • C

     $\mathrm{S}_1=\Phi$ तथा $\mathrm{S}_2=\mathbb{R}-\{0\}$

  • D

     $S_1=\mathbb{R}-\{0\}$ तथा $S_2=\Phi$

Similar Questions

$f(x)=\left|\begin{array}{ccc}\sin ^{2} x & 1+\cos ^{2} x & \cos 2 x \\ 1+\sin ^{2} x & \cos ^{2} x & \cos 2 x \\ \sin ^{2} x & \cos ^{2} x & \sin 2 x\end{array}\right|, x \in R$ का अधिकतम मान है

  • [JEE MAIN 2021]

यदि $\left| {\,\begin{array}{*{20}{c}}{{a_1}}&{{b_1}}&{{c_1}}\\{{a_2}}&{{b_2}}&{{c_2}}\\{{a_3}}&{{b_3}}&{{c_3}}\end{array}\,} \right| = 5$; तो $\left| {\,\begin{array}{*{20}{c}}{{b_2}{c_3} - {b_3}{c_2}}&{{c_2}{a_3} - {c_3}{a_2}}&{{a_2}{b_3} - {a_3}{b_2}}\\{{b_3}{c_1} - {b_1}{c_3}}&{{c_3}{a_1} - {c_1}{a_3}}&{{a_3}{b_1} - {a_1}{b_3}}\\{{b_1}{c_2} - {b_2}{c_1}}&{{c_1}{a_2} - {c_2}{a_1}}&{{a_1}{b_2} - {a_2}{b_1}}\end{array}\,} \right|$ का मान है

रैखिक समीकरण निकाय

$x + \lambda y - z = 0$

$\lambda x - y - z = 0$

$x + y - \lambda z = 0$

का एक अतुच्छ हल होने के लिए:

  • [JEE MAIN 2016]

यदि $\left| {\,\begin{array}{*{20}{c}}{x + 1}&3&5\\2&{x + 2}&5\\2&3&{x + 4}\end{array}\,} \right| = 0$,तो समीकरण  $x =$

$A,B,C$ तथा $P,Q,R$ के प्रत्येक मान के लिए $\left| {\,\begin{array}{*{20}{c}}{\cos (A - P)}&{\cos (A - Q)}&{\cos (A - R)}\\{\cos (B - P)}&{\cos (B - Q)}&{\cos (B - R)}\\{\cos (C - P)}&{\cos (C - Q)}&{\cos (C - R)}\end{array}\,} \right|$ का मान है

  • [IIT 1994]