Consider the system of linear equation $x+y+z=$ $4 \mu, x+2 y+2 \lambda z=10 \mu, x+3 y+4 \lambda^2 z=\mu^2+15$, where $\lambda, \mu \in R$. Which one of the following statements is $NOT$ correct?
The system has unique solution if $\lambda \neq \frac{1}{2}$ and $\mu \neq 1,15$
The system is inconsistent if $\lambda=\frac{1}{2}$ and $\mu \neq 1$
The system has infinite number of solutions if $\lambda=\frac{1}{2}$ and $\mu=15$
The system is consistent if $\lambda \neq \frac{1}{2}$
If the system of linear equations $x + y + z = 5$ ; $x = 2y + 2z = 6$ ; $x + 3y + \lambda z = u (\lambda \, \mu \in R)$, has infinitely many solutions then the value of $\lambda + \mu $ is
If the system of equations, $x + 2y -3z = 1, (k + 3) z = 3, (2k + 1)x + z = 0$ is inconsistent, then the value of $k$ is :-
The roots of the determinant equation (in $x$) $\left| {\,\begin{array}{*{20}{c}}a&a&x\\m&m&m\\b&x&b\end{array}\,} \right| = 0$
Evaluate $\Delta=\left|\begin{array}{lll}3 & 2 & 3 \\ 2 & 2 & 3 \\ 3 & 2 & 3\end{array}\right|$
Let $S$ be the set of all $\lambda \in \mathrm{R}$ for which the system of linear equations
$2 x-y+2 z=2$
$x-2 y+\lambda z=-4$
$x+\lambda y+z=4$
has no solution. Then the set $S$