ધારો કે $f ^1( x )=\frac{3 x +2}{2 x +3}, x \in R -\left\{\frac{-3}{2}\right\}$ છે. $n \geq 2$, માટે $f ^{ n }( x )= f ^1 0 f ^{ n -1}( x )$ પ્રમાણે વ્યાખ્યાયિત કરો.જો $f ^5( x )=\frac{ ax + b }{ bx + a }, \operatorname{gcd}( a , b )=1$, જ્યાં $a$ અને $b$ પરસ્પર અવિભાજ્ય છે,તો $a+b=............$.
$3124$
$3123$
$3126$
$3125$
વિધેય ${\sin ^{ - 1}}\sqrt x $ એ .. . . અંતરાલમાં વ્યખ્યાયિત છે.
જો $A = \left\{ {{x_1},{x_2},{x_3},.....,{x_7}} \right\}$ અને $B = \left\{ {{y_1},{y_2},{y_3}} \right\}$ મા અનુક્રમે સાત અને ત્રણ ભિન્ન સભ્યો હોય તો વિધેય $f:A \to B$ ની કુલ સંખ્યા ..... મળે કે જેથી વિધેયો વ્યાપત થાય જ્યા ત્રન સભ્યો $x$ ન એ ગણ $A$ મા એવા છે કે જેથી $f(x) = {y_2}$ થાય
વિધેય $f(x)={\left( {1 + \frac{1}{x}} \right)^x}$ હોય તો f (x) નો વિસ્તાર મેળવો
ધારો કે $x$ એ $3$ ઘટકોવાળા ગણ $A$ થી $5$ ઘટકોવાળા ગણ $B$ પરના એક-એક વિધેયોની કુલ સંખ્યા દર્શાવે છે. અને $y$ એ ગણ $A$ થી ગણ $A \times B$ પરના એક-એક વિધેયોની કુલ સંખ્યા દર્શાવે છે. તો :
ધારોકે $f: R \rightarrow R$ એવો વિધેય છે કે જ્યાં $f(x)=\frac{x^2+2 x+1}{x^2+1}$ તો