જો $f(x)$ માટે $f(7 -x) = f(7 + x)\ \forall \,x\, \in \,R$ મળે કે જેથી $f(x)$ ને $5$ ભિન્ન વાસ્તવિક બીજો મળે કે જેનો સરવાળો $S$ થાય તો $S/7$ ની કિમત ......... થાય.
$1$
$3$
$5$
$7$
$f(x)=\frac{2 x}{\sqrt{1+9 x^2}}$ પ્રમાણે વ્યાખ્યાયિત વિધેય $f: \mathbb{R} \rightarrow \mathbb{R}$ ધ્યાને લો. જો $f$ નું સંયોજન $\underbrace{(f \circ f \circ f \circ \cdots \circ f)}_{1090 \cdots+1}(x)=\frac{2^{10} x}{\sqrt{1+9 \alpha x^2}}$ હોય, તો $\sqrt{3 \alpha+1}$ નું મૂલ્ચ .......... છે.
જો $\,\,f(x) = \left\{ {\begin{array}{*{20}{c}}
{3 + x;\,\,\,\,\,x \geqslant 0} \\
{2 - 3x;\,\,\,\,\,x < 0}
\end{array}} \right.$ હોય તો $\mathop {\lim }\limits_{x \to 0} f(f(x))$ ની કિમત મેળવો.
જો $A = \{ {x_1},\,{x_2},\,............,{x_7}\} $ અને $B = \{ {y_1},\,{y_2},\,{y_3}\} $ બે ગણ છે કે જે અનુક્રમે સાત અને ત્રણ ઘટકો ધરાવે છે . તો ગણ $A$ માં બરાબર ત્રણ ઘટકો હોય કે જેથી $f(x)\, = y_2$ થાય તેવા $f : A \to B$ પરના વ્યાપ્ત વિધેય ની સંખ્યા મેળવો.
જો $A= \{1, 2, 3, 4\}$ અને સંબંધ $R : A \to A$ ; $R = \{ (1, 1), (2, 3), (3, 4), ( 4, 2) \}$ આપેલ હોય તો આપેલ પૈકી સત્ય વિધાન મેળવો.
ધારો કે $f : N \rightarrow R$ એવું વિધેય છે કે જેથી પ્રાકૃતિક સંખ્યાઓ $x$ અને $y$ માટે $f(x+y)=2 f(x) f(y)$. જો $f(1)=2$, તો $\sum \limits_{k=1}^{10} f(\alpha+k)=\frac{512}{3}\left(2^{20}-1\right)$ થાય તે માટેની $\alpha$ ની કિમત ....... છે.