- Home
- Standard 12
- Mathematics
3 and 4 .Determinants and Matrices
normal
અહી $P$ એ ચોરસ શ્રેણિક છે કે જેથી $P ^2= I - P$ થાય. $\alpha, \beta, \gamma, \delta \in N$ માટે જો $P ^\alpha+ P ^\beta=\gamma I -29 P$ અને $P ^\alpha- P ^\beta=$ $\delta I-13 P$ હોય તો $\alpha+\beta+\gamma-\delta$ ની કિમંત મેળવો.
A
$18$
B
$40$
C
$24$
D
$22$
(JEE MAIN-2023)
Solution
$P ^2= I – P$
$P ^\alpha+ P ^\beta=\gamma I -29 P , P ^\alpha- P ^\beta=\delta I -13 P$
$P ^4=( I – P )^2= I -2 P + P ^2=2 I -3 P$
$P ^6=(2 I -3 P )( I – P )=5 I -8 P$
$P ^8=(2 I -3 P )^2=4 I -12 P +9( I – P )=13 I -21 P$
$P ^8+ P ^6=18 I -29 P$
$P ^8- P ^6=8 I -13 P$
$\alpha=8 ; \beta=6 ; \gamma=18, \delta=8$
$\alpha+\beta+\gamma-\delta=8+6+18-8=24$
Standard 12
Mathematics