3 and 4 .Determinants and Matrices
normal

माना $\mathrm{P}$ एक वर्ग आव्यूह है जिसके लिए $\mathrm{P}^2=\mathrm{I}-\mathrm{P}$ है। $\alpha, \beta, \gamma, \delta \in \mathrm{N}$, के लिए यदि $\mathrm{P}^\alpha+\mathrm{P}^\beta=\gamma \mathrm{I}-29 \mathrm{P}$ तथा $P^\alpha-P^\beta=\delta I-13 P$ हैं, तो $\alpha+\beta+\gamma-\delta$ बरार है

A

$18$

B

$40$

C

$24$

D

$22$

(JEE MAIN-2023)

Solution

$P ^2= I – P$

$P ^\alpha+ P ^\beta=\gamma I -29 P , P ^\alpha- P ^\beta=\delta I -13 P$

$P ^4=( I – P )^2= I -2 P + P ^2=2 I -3 P$

$P ^6=(2 I -3 P )( I – P )=5 I -8 P$

$P ^8=(2 I -3 P )^2=4 I -12 P +9( I – P )=13 I -21 P$

$P ^8+ P ^6=18 I -29 P$

$P ^8- P ^6=8 I -13 P$

$\alpha=8 ; \beta=6 ; \gamma=18, \delta=8$

$\alpha+\beta+\gamma-\delta=8+6+18-8=24$

Standard 12
Mathematics

Similar Questions

Start a Free Trial Now

Confusing about what to choose? Our team will schedule a demo shortly.