Let $f :[2,4] \rightarrow R$ be a differentiable function such that $\left(x \log _e x\right) f^{\prime}(x)+\left(\log _e x\right) f(x)+f(x) \geq 1$, $x \in[2,4]$ with $f(2)=\frac{1}{2}$ and $f(4)=\frac{1}{4}$.
Consider the following two statements:
$(A): f(x) \leq 1$, for all $x \in[2,4]$
$(B)$ : $f(x) \geq \frac{1}{8}$, for all $x \in[2,4]$
Then,
Only statement $(B)$ is true
Neither statement $(A)$ nor statement $(B)$ is true
Both the statement $(A)$ and $(B)$ are true
Only statement $(A)$ is true
A value of $c$ for which the conclusion of mean value the theorem holds for the function $f(x) = log{_e}x$ on the interval $[1, 3]$ is
If $f(x)$ satisfies the conditions of Rolle’s theorem in $[1,\,2]$ and $f(x)$ is continuous in $[1,\,2]$ then $\int_1^2 {f'(x)dx} $ is equal to
For every pair of continuous functions $f, g:[0,1] \rightarrow R$ such that $\max \{f(x): x \in[0,1]\}=\max \{g(x): x \in[0,1]\}$, the correct statement$(s)$ is (are) :
$(A)$ $(f(c))^2+3 f(c)=(g(c))^2+3 g(c)$ for some $c \in[0,1]$
$(B)$ $(f(c))^2+f(c)=(g(c))^2+3 g(c)$ for some $c \in[0,1]$
$(C)$ $(f(c))^2+3 f(c)=(g(c))^2+g(c)$ for some $c \in[0,1]$
$(D)$ $(f(c))^2=(g(c))^2$ for some $c \in[0,1]$
Let $g: R \rightarrow R$ be a non constant twice differentiable such that $g^{\prime}\left(\frac{1}{2}\right)=g^{\prime}\left(\frac{3}{2}\right)$. If a real valued function $f$ is defined as $\mathrm{f}(\mathrm{x})=\frac{1}{2}[\mathrm{~g}(\mathrm{x})+\mathrm{g}(2-\mathrm{x})]$, then
Verify Mean Value Theorem, if $f(x)=x^{2}-4 x-3$ in the interval $[a, b],$ where $a=1$ and $b=4$